Stuart Firestein, The Pursuit of Ignorance

We all have this sense that science is this mountain of facts, this accumulation model of science, as many have called it, and it seems impregnable, it seems impossible. How can you ever know all of this? And indeed, the scientific literature grows at an alarming rate….

So what do we do about this? Well, the fact is that what scientists do about it is a kind of a controlled neglect, if you will. We just don’t worry about it, in a way. The facts are important. You have to know a lot of stuff to be a scientist. That’s true. But knowing a lot of stuff doesn’t make you a scientist. You need to know a lot of stuff to be a lawyer or an accountant or an electrician or a carpenter. But in science, knowing a lot of stuff is not the point. Knowing a lot of stuff is there to help you get to more ignorance. So knowledge is a big subject, but I would say ignorance is a bigger one.

So this leads us to maybe think about, a little bit about, some of the models of science that we tend to use, and I’d like to disabuse you of some of them. So one of them, a popular one, is that scientists are patiently putting the pieces of a puzzle together to reveal some grand scheme or another. This is clearly not true. For one, with puzzles, the manufacturer has guaranteed that there’s a solution. We don’t have any such guarantee. Indeed, there are many of us who aren’t so sure about the manufacturer…

Another popular model is that science is busy unraveling things the way you unravel the peels of an onion. So peel by peel, you take away the layers of the onion to get at some fundamental kernel of truth. I don’t think that’s the way it works either. Another one, a kind of popular one, is the iceberg idea, that we only see the tip of the iceberg but underneath is where most of the iceberg is hidden. But all of these models are based on the idea of a large body of facts that we can somehow or another get completed. We can chip away at this iceberg and figure out what it is, or we could just wait for it to melt, I suppose, these days, but one way or another we could get to the whole iceberg. Right? Or make it manageable. But I don’t think that’s the case. I think what really happens in science is a model more like the magic well, where no matter how many buckets you take out, there’s always another bucket of water to be had, or my particularly favorite one, with the effect and everything, the ripples on a pond. So if you think of knowledge being this ever-expanding ripple on a pond, the important thing to realize is that our ignorance, the circumference of this knowledge, also grows with knowledge. So the knowledge generates ignorance. This is really well said, I thought, by George Bernard Shaw. This is actually part of a toast that he delivered to celebrate Einstein at a dinner celebrating Einstein’s work, in which he claims that science just creates more questions than it answers. [“Science is always wrong. It never solves a problem without creating 10 more.”]

…So I’d say the model we want to take is not that we start out kind of ignorant and we get some facts together and then we gain knowledge. It’s rather kind of the other way around, really. What do we use this knowledge for? What are we using this collection of facts for? We’re using it to make better ignorance, to come up with, if you will, higher-quality ignorance. Because, you know, there’s low-quality ignorance and there’s high-quality ignorance. It’s not all the same. Scientists argue about this all the time. Sometimes we call them bull sessions. Sometimes we call them grant proposals. But nonetheless, it’s what the argument is about. It’s the ignorance. It’s the what we don’t know. It’s what makes a good question.

So how do we think about these questions? I’m going to show you a graph that shows up quite a bit on happy hour posters in various science departments. This graph asks the relationship between what you know and how much you know about it. So what you know, you can know anywhere from nothing to everything, of course, and how much you know about it can be anywhere from a little to a lot. So let’s put a point on the graph. There’s an undergraduate. Doesn’t know much but they have a lot of interest. They’re interested in almost everything. Now you look at a master’s student, a little further along in their education, and you see they know a bit more, but it’s been narrowed somewhat. And finally you get your Ph.D., where it turns out you know a tremendous amount about almost nothing. What’s really disturbing is the trend line that goes through that because, of course, when it dips below the zero axis, there, it gets into a negative area. That’s where you find people like me, I’m afraid.

So the important thing here is that this can all be changed. This whole view can be changed by just changing the label on the x-axis. So instead of how much you know about it, we could say, “What can you ask about it?” So yes, you do need to know a lot of stuff as a scientist, but the purpose of knowing a lot of stuff is not just to know a lot of stuff. That just makes you a geek, right? Knowing a lot of stuff, the purpose is to be able to ask lots of questions, to be able to frame thoughtful, interesting questions, because that’s where the real work is.

…I guess it comes down to our education system, so I’m going to talk a little bit about ignorance and education, because I think that’s where it really has to play out. So for one, let’s face it, in the age of Google and Wikipedia, the business model of the university and probably secondary schools is simply going to have to change. We just can’t sell facts for a living anymore. They’re available with a click of the mouse, or if you want to, you could probably just ask the wall one of these days, wherever they’re going to hide the things that tell us all this stuff.

So what do we have to do? We have to give our students a taste for the boundaries, for what’s outside that circumference, for what’s outside the facts, what’s just beyond the facts. How do we do that? Well, one of the problems, of course, turns out to be testing. We currently have an educational system which is very efficient but is very efficient at a rather bad thing. So in second grade, all the kids are interested in science, the girls and the boys. They like to take stuff apart. They have great curiosity. They like to investigate things. They go to science museums. They like to play around. They’re in second grade. They’re interested. But by 11th or 12th grade, fewer than 10 percent of them have any interest in science whatsoever, let alone a desire to go into science as a career. So we have this remarkably efficient system for beating any interest in science out of everybody’s head.

Is this what we want? I think this comes from what a teacher colleague of mine calls “the bulimic method of education.” You know. You can imagine what it is. We just jam a whole bunch of facts down their throats over here and then they puke it up on an exam over here and everybody goes home with no added intellectual heft whatsoever.

This can’t possibly continue to go on. So what do we do? Well the geneticists, I have to say, have an interesting maxim they live by. Geneticists always say, you always get what you screen for. And that’s meant as a warning. So we always will get what we screen for, and part of what we screen for is in our testing methods. Well, we hear a lot about testing and evaluation, and we have to think carefully when we’re testing whether we’re evaluating or whether we’re weeding, whether we’re weeding people out,whether we’re making some cut. Evaluation is one thing. You hear a lot about evaluation in the literature these days, in the educational literature, but evaluation really amounts to feedback and it amounts to an opportunity for trial and error. It amounts to a chance to work over a longer period of time with this kind of feedback. That’s different than weeding, and usually, I have to tell you, when people talk about evaluation, evaluating students, evaluating teachers, evaluating schools, evaluating programs, that they’re really talking about weeding. And that’s a bad thing, because then you will get what you select for, which is what we’ve gotten so far.

So I’d say what we need is a test that says, “What is x?” and the answers are “I don’t know, because no one does,” or “What’s the question?” Even better. Or, “You know what, I’ll look it up, I’ll ask someone, I’ll phone someone. I’ll find out.” Because that’s what we want people to do, and that’s how you evaluate them. And maybe for the advanced placement classes, it could be, “Here’s the answer. What’s the next question?” That’s the one I like in particular.

So let me end with a quote from William Butler Yeats, who said, “Education is not about filling buckets; it is lighting fires.” So I’d say, let’s get out the matches.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s